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ABSTRACT 
 

Detachment of the plasma exhaust is an essential 
element of a magnetic nozzle operation that requires 
experimental, analytic and computer simulation studies.  
The present work is devoted to computer simulations of 
the plasma detachment in the Variable Specific Impulse 
Magnetoplasma Rocket.  Both particle simulation and 
MHD methods have been used and results are reported 
in this paper.   
 

INTRODUCTION 
 
A magnetic nozzle plays two important roles in the 
operations of the Variable Specific Impulse 
Magnetoplasma Rocket (VASIMR)1,2,3,4.  First, the 
perpendicular spiral motion of ions is converted into the 
axial motion.  Second, the plasma detaches from the 
thruster.  Both effects are critical in providing rocket 
thrust.  The goal of mathematical simulations, reported 
in the paper, is to help understand the physics of plasma 
detachment and to assist in the design of a thruster 
suitable for an actual flight test. 

Computer simulations of plasmas are typically done by 
using one, or a combination of three general techniques:  
fluid models, numerical solution of kinetic equations 
(Vlasov / Fokker-Planck), and particle models. 

Recent growth in computer speed and memory of has 
made the particle description particularly attractive5.  
Particle methods, both Particle-in-Cell (PIC) and direct 
simulation Monte-Carlo (DSMC) methods, have been 
effectively used for simulation of Pulsed Plasma 
Thrusters (PPT)6, Hall Thrusters7 as well as Ion 
Thrusters8.  In this paper we describe a particle 
trajectory method9, and compare it with other modeling 
techniques to provide a quite accurate description for 
VASIMR plasma exhaust. The particle code is used for 

demonstrating plasma detachment in VASIMR.  The 
results of the particle code are compared with results of 
MHD codes and with analytical considerations. 

PREVIOUS PLASMA DETACHMENT STUDIES 

Previous studies of the plasma detachment in a 
magnetic nozzle used simple models for the plasma 
flow.  Kosmahl’s10 and Sercel’s11 models involve 
calculation of trajectories of ions and electrons guiding 
centers for given vacuum magnetic field.  They observe 
plasma detachment by analyzing how the ion velocities 
behave and how the ion trajectories cross magnetic field 
lines.  

The study by Sercel showed the improvement of 
propulsive efficiency of the magnetic nozzle by 
introducing extra tuning electric coils, acting as 
magnetic lens.  York’s12 and Hoopers’s13 model 
considers a single-fluid MHD flow for given magnetic 
field.  The condition for detachment in Hooper’s study 
is given by the scaling parameter G < 2,750, defined as 
G = (eBzrp(z0))

2 / (memi(2u(z0))
2).  This work continues 

the previous studies of plasma detachment in the 
magnetic nozzle by considering additional simulation 
methods to analyze the detachment. 

MAGNETIC CONFIGURATION IN VASIMR 
 
The VASIMR system consists of three major magnetic 
cells, denoted as “forward,” “central,” and “aft”1,2,3,4.  A 
magnet configuration example (related to a 24 kW 
VASIMR thruster14 conceptual design) and the 
corresponding magnetic field profile is shown in Figure 
1. 
 
The forward end-cell provides the injection of the 
neutral gas to be  ionized by electromagnetic waves that 
are produced by helicon antenna.  In the central-cell, 
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the plasma is also electromagnetically heated by waves 
operating near the Ion-Cyclotron Resonant Frequency 
(ICRF).  The aft end-cell ensures that the plasma will 
efficiently detach from the magnetic field to provide 
propulsion through a highly directed exhaust stream.  
This magnetic configuration allows the plasma exhaust 
to be guided and controlled over a wide range of plasma 
energies and densities. 
 

 
Figure 1:  Geometry and magnetic field configuration 
for 24 kW VASIMR thruster. 
 
In Figure 1, the forward end-cell is located at z < 0.7 
(m), the central cell at 0.7 < z < 1 and the aft end-cell is 
at 1 < z.  In this paper we investigate the plasma 
exhaust in the aft end-cell in the domain 1 < z < 5.  The 
position z0 = 1 (m) will be referred as the inlet of the 
exhaust. 
 
Currently, the VASIMR system is under development 
for a first space flight experiment using 24 kW of DC 
electric power.  In the future, several megawatt 
VASIMR thrusters will be considered for human 
interplanetary flights to Mars and beyond15.  This paper 
deals with exhaust plasma detachment for the 24 kW 
VASIMR thruster (VF-24), which is assumed to have 
the operational parameters shown in Table 1. 
 
 

 Operating 
parameter 

Definition/Typical value  

1. Input power P = 24,000 (W) 
2. Power efficiency 

(fraction of the input 
power going into the 
thrust power). 

ε = 0.4  

3. Specific impulse Isp = 10,000 (sec). 
4. Exhaust thrust 

velocity 
u = Isp g = 105 (m/s) 

5. Thrust force 
F = 

u

P2ε
 = 0.192 (N). 

6. Propellant rate 61092.1
u

F
m −⋅==& (kg/s). 

7. Propellant ion mass 
in terms of proton 
mass 

mi = 2 mp (Deuterium) 

8. Exhaust ion energy 

e2

um
W

2
i

i = =100 (eV) 

9. Radius of plasma at 
the exhaust inlet 

rp(z0)=0.05 (m) 

10. Directed energy of 
the plume at the 
exhaust inlet 

Wz(z0) = ½ Wi = 50 (eV) 

11. Electron temperature 
is assumed constant 

Te = 5 (eV) 
 

12. Orthogonal ion 
temperature at the 
exhaust inlet 

Ti⊥ = ½ Wi = 50 (eV) 

13. Average ion density 
at the exhaust inlet ==

)z(v)z(rm

m
n

0||
2

0pi
i

π

&

1018 (m-3) 
14. Maximum ion 

density at the exhaust 
inlet 

nmax = 2 in  = 2 1018 (m-3), 
assuming parabolic density 
profile ni(r, z0) = nmax (1 – 
r2/rp

2(z0)). 
 

Table 1:  Definitions and typical values of operating 
parameters for 24 kW VASIMR thruster. 
 
Axial profiles for basic plasma parameters are shown in 
Figure 2.  The Debye length λD is much less than the 
plasma radius rp everywhere, therefore the plasma 
quasi-neutrality will hold except in very localized 
sheath regions.  Although collisional processes can play 
an important role in the plasma source region, the 
exhaust can be assumed reasonably collisionless 
beyond the central section as long as the mean free path 
λmfp for various collision processes is much larger than 
plasma characteristic length.  While the electrons 
follow the magnetic field through most of the region of 
interest, the ion Larmor radius ri

L eventually becomes 
larger than the magnetic field curvature radius. 
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Figure 2:  Plasma density profile (top) and scale lengths 
(bottom) of 24 kW VASIMR thruster. 
 

ANALYTIC ESTIMATES FOR PLASMA 
DETACHMENT 

 
A scaling analysis, also proposed by Dr. Roald Sagdeev 
(and reproduced below), is helpful in understanding 
some of the physics.  In the VASIMR plasma exhaust, 
the magnetic flux is conserved.  Thus, if B is the 
vacuum magnetic field and rp is the radial coordinate 
plasma radius rp, then 

2
pr

1
~B . 

From particle flux conservation, the plasma density n 
has the same dependence on rp as B: 

2
pr

1
~B~n . 

Assuming that ion kinetic energy is a constant in the 
plasma exhaust (when the axial ambipolar electric field 
is neglected): const~W , the plasma beta, defined 
through the total energy W, has the following 
dependence on plasma radius: 

2
p2

r~
B

1
~

B

nW
~β . 

This estimate shows that the ratio of plasma kinetic 
energy density to the magnetic field energy density 

increases downstream. When beta is greater than unity, 
the plasma has enough energy to stretch the magnetic 
field lines along the flow and thereby detach from the 
thruster.  The condition β > 1 also means that the flow 
velocity is greater than the Alfvén velocity, which 
shows that plasma detachment is essentially a transition 
from sub-Alfvénic to super-Alfvénic flow.  Similarly to 
what occurs in a supersonic flow created by the Laval 
nozzle, perturbations in the super-Alfvénic plume 
cannot be left in the sub-Alfvénic region and leave the 
system together with the outgoing flow.  Our numerical 
simulations confirm this behavior. 
 

PARTICLE TRAJECTORY SIMULATIONS OF 
THE PLASMA PLUME 

 
The magnetic and electric fields, plasma density and 
electric current density are assumed at steady state and 
having cylindrical symmetry, which leaves dependence 
only on radial and axial coordinates r and z.  
  
The magnetic field vector is a sum of the fields 
generated by the external coil and by the plasma 
current: B(r, z) = B0 (r, z) + Bp (r, z).  The electric field 
in the plasma plume is the ambipolar electric field: 
E(r,z) = Ep (r, z).   
 
The particle simulation currently incorporates five 
integrated models for calculation of these fields as 
shown in Figure 3.  

 
 
Figure 3:  Mathematical simulation of plasma in 
VASIMR. 
 
First, the magnetostatic field produced by the magnet 
coils, B0 (r, z), is accurately generated.  This field does 
not change throughout the remaining calculation. 
 
Second, a fully nonlinear particle model, that is 
currently collisionless, calculates the ion positions and 
velocities xi(t), vi(t) by solving the momentum equation.  
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The Lorentz force is calculated from the static and RF 
fields obtained from the Maxwell equation solvers in a 
three-dimensional space. 
 
Third, the ion density, ni(r, z) and ion current density 
ji(r, z) are calculated from the ion positions and 
velocities averaging over the gyro-motion, using a 
particle to grid weighting.  The resulting ion density is 
approximately equal to the electron density in a 
quasineutral approximation, and it is fed into the fourth 
step. 
 
The fourth step iterates over the previous models using 
ni(r, z) and a Boltzmann approximation for the electron 
distribution to solve Poison’s equation for the steady 
state plasma potential giving Ep (r, z).  This field further 
modifies the plasma density and hence the RF coupling. 
 
The steady state plasma current density, ji(r, z) becomes 
important in the exhaust region where Bp(r, z) can 
become significant compared with the fields from the 
magnet coils.  Thus, the fifth and final step calculates 
steady state magnetic field corrections caused by the 
plasma in the exhaust region. 
 
1) Magnetostatic Equations. 
 
The magnetostatic problem is a steady-state case of two 
vector Maxwell equations: 

0000 ,
1

ABjB ×∇==×∇
µ

,  (1) 

where B0 is the vacuum magnetic induction vector, µ  is 
the magnetic permeability, j0 is the current density in 
electromagnets and A0 is the magnetic vector potential. 
When modeling the VASIMR system, the assumptions 
of cylindrical symmetry and constant magnetic 
permeability µ are valid.  In that case, the magnetic 
vector potential A0 (as well as current density vector j0), 
written in the cylindrical coordinate system (r, φ, z), 
has only an azimuthal nonzero component: A = (0, 
Aφ(r, z), 0) and the problem (1) can be rewritten in the 
following form:    

,rj
zrr

1

r
r 02

2

µ
ΦΦ

=
∂

∂
−

∂
∂

∂
∂

−   (2) 

where Φ(r, z) = r Aφ(r, z) is the magnetic flux. 
 
Equation (2) is solved with a high level of accuracy 
using a finite difference scheme, which is solved by a 
fast iterative method, described in previous 
publications16, 17. Figure 1 demonstrates the numerical 
solution for the vacuum magnetic field for a 24 kW 
VASIMR thruster.  The calculated vacuum magnetic 
field B0 is used in both particle and MHD calculations.   
 
 

2) Particle Dynamics. 
 
The ion motion satisfies the following equation of 
motion: 

)(e
dt

d
m i

i
i EBv

v
+×= .      (3) 

The single particle trajectories are integrated from 
equation (3) with an adaptive time-scheme, which can 
quickly solve extensive particle simulations for systems 
of hundreds of thousands of particles in a reasonable 
time (1-2 hours), and without the need for a powerful 
supercomputer.  The particle calculation method is 
described in previous publications18,19,20. 
 
Figure 4 illustrates magnetic field lines and a typical 
ion trajectory in the exhaust area of the VASIMR.  
From the ion trajectory observation, one can see the 
beginning of the particle detachment from the magnetic 
field in the exhaust area with weak magnetic field.   
 

 
Figure 4.  Top: Magnetic field lines and test ion 
trajectory in the VASIMR.  Middle: Total, axial and 
perpendicular energies of the test ion.  Bottom: 
Magnetic moment of the test ion trajectory.  The ion 
detachment due to Larmor radius increase is observed. 
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 The ion Larmor radius rL = mi vi⊥ / (q B) is rather small 
inside and near the thruster.  However, it increases 
significantly down the flow, when the trajectory 
converges to a straight line.  In the magnetic nozzle, the 
ion rotational energy converts into axial energy, which 
is demonstrated in the middle part of the Figure 4.   
 
Since the magnetic flux B rp

2 is a constant, where rp is a 
plasma radius, the magnetic field goes down as fast as 
rp

-1.   The calculations show in the bottom of Figure 4, 
that the magnetic moment µi = mi vi⊥

2 / (2 B) is 
approximately constant inside and near the thruster (0.7 
< z < 1.2 m) but goes up in the exhaust area down the 
flow.  It is accompanied with the perpendicular velocity 

⊥v  going down as fast as rp
-1.  This makes the Larmor 

radius rL = 2 µi / (q vi⊥) increase faster than the 
magnetic moment. 
 
During extensive particle simulation, one needs to 
define an initial ion velocity distribution.  Current 
simulation assume a Maxwell distribution of ion 
velocity before going into the nozzle at z = 0.7 m.  
Figure 5 demonstrates initial ion velocity distributions 
inside the VASIMR engine at z = 0.7 (B = 0.565 T) and 
recalculated distribution at the boundary area with 
magnetic moment being conserved (z  = 1.2 m, B = 
0.054 T). 
 

 
Figure 5:  Initial ion velocity distributions at z = 0.7 m, 
B = 0.565 T and at z = 1.2 m, B = 0.054 T. 
 

Note, that we moved the inlet position for the particles, 
from z = 1 m (B = 0.265 T) to z = 0.7 m (B = 0.565 T).  
This allows us to have à prefluid stabilization domain 
0.3 m long.  In that stabilization domain the magnetic 
moment was conserved and initial conditions for 
particles where taken as W|| = 20 eV, T⊥ = 80 eV at z = 
0.7 m, to yield conditions W|| = 50 eV, T⊥ = 50 eV at z 
= 1 m. This computational step gives a smoother 
calculated fluid variables of plasma density n, electric 
field Ep and magnetic field Bp for z > 1 m.   
 
Figure 6 demonstrates the trajectory of a single electron 
with 5 eV energy.  In contrast to the ions, the complete 
electron attachment to the magnetic field is observed.   
 

 
Figure 6:  Magnetic field lines and test electron 
trajectory.  The complete electron attachment is 
observed.  
 
3) Particle to Grid Weighting 
 
The ion density ni is calculated by using a weighting 
method5,10 for method of trajectories9.  With a given 
distribution for the initial position and velocity vector, 
a large number (order of 105) of ion trajectories is 
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calculated.  Every single trajectory is used to generate a 
number of particles distributed along it with equal time 
step between them.  Plasma density clouds with a 
certain weight and a size of the finite difference cells 
are produced around each particle point, which after 
summation, became discrete ion density ni defined 
constant at each finite difference cell, using the 
following formula 

 ∑ −=
k

kjiji )(Qw)(n xXX ,   

where Xj is a position of the j-cell, xk is a position of k-
particle, wI is a particle weight, Q(.) is a cloud density 
function.  In our simulation, we used a continuous 
piece-wise-linear function with a support equal shape 
of the j-cell.  The particle weight wi is calculated, such 
that it makes the grid density equal given value at given 
point: 

 0
i0i n)(n =X .   

The ion current density ji is calculated by a technique, 
similar to that used to calculate the ion density in 
Figure 2.  Namely,  
  .)(Qew)( k

k
kjiji vxXXj ∑ −=              (4) 

 
4) Electrostatic Equations. 
 
The electric field Ep can be calculated from the electric 
potential ϕ: 

ϕ−∇=pE .   (5) 

In the system with cylindrical symmetry, it yields that 
Ep has only radial and axial nonzero components.  The 
electric potential also satisfies the Poisson equation: 

),enin(e2 −=∇− ϕ   (6) 

where the right-hand side is a plasma charge density.  
To avoid calculation of the electron density function, 
the Boltzmann relation is used: 

 







=

e
0e kT

e
expnn

ϕ
,  (7) 

where the bulk electron density n0 is assumed equal the 
ion density at the plasma inlet (assuming that ϕ=0 
there), and is a constant function along every magnetic 
field line.  
 
In the present simulations the electron temperature Te is 
assumed constant.  Due to the very small value of the 
Debye length for the studied plasma system: 

 4
2D 10

ne4

kT −<=
π

λ m,        (8) 

the Poisson equation (6) can be simplified to the 
quasineutrality relation: ni = ne, which gives the 
following formula for the electric potential: 

 







=

0

ie

n

n
ln

e

kT
ϕ .                  (9) 

To avoid ln(0) calculations, the ion density can be 
adjusted by some small positive constant.   Equation (9) 
has to be solved in the loop with particle simulations 
for the ions using an updated electric field.  To achieve 
convergence in the self-consistent plasma – electric 
field calculations, under-relaxation (damping) is needed 
for updating the electric potential: 

new
*

new )1( ϕττϕϕ −+=  with a relaxation parameter τ 

< 1.  In practical simulation, 10 iterations were enough 
to get a convergence with the relaxation parameter τ = 
0.3. 
 
Figure 7 demonstrates the electric potential solution for 
the plasma system shown at Figure 2.  The negative 
ambipolar electric potential in the exhaust area 
accelerates ions, which adds to the VASIMR 
performance. 

 

 
Figure 7.  Top:  Ion energy and temperature and electric 
potential in the 24 kW VASIMR thruster.  Bottom:  
corresponding 2D contour-plot of the electric potential 
and magnetic field lines.  The electric field is calculated 
self-consistently with the plasma density, shown in 
Figure 2. 
 
5) Calculation of the internal plasma magnetic 

field 
 
To calculate the plasma magnetic field, the plasma 
current has to be derived first.  In an axisymmetric 
system with cylindrical symmetry, this current is purely 
azimuthal.   
 



AIAA-2002-0346 

7 
American Institute of Aeronautics and Astronautics 

The momentum balance equation 
Bjuu ×=∇⋅ p)(ρ           (11) 

yields the following dependence of plasma current due 
to the curvature of the vacuum magnetic field in the 
exhaust: 

2p
B

)( Buu
j

×∇⋅
=

ρ
.          (12) 

The plasma current generates a plasma magnetic field 
that satisfies Ampere’s law: 

ppB
1

j=×∇
µ

.          (13) 

The ratio of the plasma magnetic field to the vacuum 
magnetic field can be estimated by the following 
expression: 

p

p

p
2

p
2

p

a

r

aB

ru

B

B
β

µρ
=≈ ,  (14) 

where ap is the magnetic field curvature.  The particle 
simulation results are consistent with this analytical 
estimate. 
 
The internal plasma magnetic field can be calculated 
using the same solver, as used for the vacuum magnetic 
field calculation.  The only difference in this calculation 
is a current density source jp.   The calculation of Bp 
should be iterated with the calculation of plasma 
velocity and density.  
 
Figure 8 demonstrates the plasma current density due to 
the curvature of the magnetic field calculated by 
formula (12) and the magnetic field calculated by 
equation (13).  In the plasma exhaust, the plasma 
magnetic field lines approach the direction of the z-axis.   
 

 
 
Figure 8:  Curvature current density and corresponding 
magnetic field lines. 
 
Note, that complete plasma current density calculated 
from particle trajectories by the formula (4) includes 
both magnetic field curvature and diamagnetic effects.   
The diamagnetic effect is essential only for high 
magnetic field in the area close to the thruster core and 
becomes negligible further away from it.  It is 
demonstrated in Figure 9.  
 

 
 
Figure 9:  Plasma current density (diamagnetic and 
curvature) and corresponding magnetic field lines. 
 
As numerical experiments show, the plasma-generated 
magnetic field in the area close to the thruster core is 
due to the diamagnetic effect and has an opposite 
direction to the vacuum magnetic field.  In the exhaust 
area, when ions detach from the vacuum magnetic field, 
the plasma-generated field is due to the curvature 
current, which has the same direction. Although the 
value of beta reaches unity at z = 3m, the plasma-
generated field is still smaller than the vacuum 
magnetic field for the studied range of parameters.  
That is shown in the Figure 10. 
 

 
Figure 10:  Demonstrating plasma detachment due to 
increasing plasma beta and plasma magnetic field 
approaching a constant.  Plasma magnetic field Bp, 
calculated by the particle code is correlated well with 
semianalitical disturbed field δB, defined from the 
formula (14). 
 
6) Observation of plasma detachment 
 
During particle simulations we have observed the 
following indications of plasma detachment in 
VASIMR: 

1) Axial ion energy Wz approaches a constant, 
which indicates that ion motion is not affected 
by the magnetic field, as shown in Figure 4.  
Thus, the velocity distribution function on the 
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axis becomes independent of z for large z.  The 
example of the velocity distribution function is 
demonstrated in Figure 11. 

 

 
Figure 11:  Calculated velocity distribution function 
using particle simulation.  The effect of magnetic 
nozzle is observed. 
 

2) Magnetic moment µi increases (Figure 4). 
3) Plasma β increases above 1.  For the small 

power space-flight experiment VASIMR 
configuration, plasma β goes above one at the 
distance of 1.8 m from the nozzle magnet.   
Figures 10 and 12 demonstrate plasma β along 
axis z and in two-dimensional cross-section. 

4) Plasma magnetic field is approaching a 
constant in the plasma exhaust (Figures 8, 9, 
10).  As demonstrated in Figure 10, the ratio of 
plasma magnetic field Bp to the vacuum 
magnetic field B0 goes up from order –4 at the 
nozzle magnet to order –2 at 2 m from the 
nozzle magnet.  Even in the area of plasma β 
larger than one, the plasma magnetic field is 
still much less than vacuum magnetic field.  
Also, Figure 10 demonstrates that plasma 
magnetic field Bp, calculated by the particle 
code correlates well with semianalitical 
disturbed field δB = (rp / ap) B, defined from 
the formula (14). 

5) Ion Larmor radius rL becomes greater than 
vacuum magnetic field line curvature ap.  

 

 
Figure 12:  2D picture of plasma beta in the VASIMR 
exhaust. 

 
MHD SIMULATION WITH THE NIMROD CODE 

 
A 3-D, MHD simulation tool is being developed and 
validated to bring the present theoretical analysis of the 
VASIMR nozzle/exhaust plasma region to a more 
accurate level.  The simulation is able to reproduce 
quantitatively the exhaust plasma profiles at a distance 
from the engine where the detachment takes place.  
 
The code is based on an upgraded version of 
NIMROD,21 a code built for three-dimensional 
nonlinear fluid modeling of magnetized plasmas.  This 
code is the result of a still ongoing multi-institutional 
effort supported by the U.S. Department of Energy and 
it is available in the public domain. 
 
For this application, the NIMROD has been upgraded to 
introduce the density equation in the model (removing 
the incompressible fluid approximation of the current 
NIMROD release), and a provision for open-end 
boundary conditions and a plasma source term to 
simulate the exhaust flow.  The applicable set of 
equations is: 
 

1) Maxwell Equations 

   
1

           ,
t pp
p

jBE
B

=×∇×−∇=
µ∂

∂
 

2) Continuity Equation 

uρ
∂
∂ρ

⋅−∇=
t

 

3) Momentum Equation 

 p(
t

+⋅−∇=





 ∇⋅+ Iuu

u
∂
∂

ρ ΠΠ) + j × B 
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4) Energy Equation 

−⋅∇=∇⋅+ uu p
2

3
p

t

p

∂
∂

Π Π : ∇u 

5) Ohm’s Law (ideal MHD) 
BuE ×−=  

The present simulations use the viscosity coefficient η 
to obtain a closure for the stress tensor as Π Π = η ∇u. 
 
Preliminary tests have been performed in a 2D (r-z) 
section of a cylindrical domain in 2D with the axis 
along the z direction.  Open-end boundary conditions 
are imposed, along both the longitudinal and the radial 
direction.  A plasma source term is injecting plasma in a 
low-density background environment and over time a 
plasma pulse is formed and starts to propagate along the 
magnetic nozzle. The simulation shows the initial 
transient of the pulse formation before the equilibrium 
between the exhaust rate and the injection rate is 
reached.  
 
The results of the MHD codes are being used for 
validation of the particle code results and to obtain a 
better understanding of the plasma detachment.  As 
shown in Figure 12, the results of particle simulation 
and MHD simulation on plasma beta analysis are very 
similar. 
 

CONCLUSION 
 
The described particle simulations in VASIMR 
demonstrate plasma detachment from the magnetic 
nozzle.  Reasonable agreement between MHD and 
particle simulation is observed in plasma beta 
detachment analysis.  The codes developed so far are 
being validated in the VX-10 laboratory experiment 
and assisting researchers in the design of a VASIMR 
flight demonstration experiment. 
 

NOMENCLATURE  
 
A  magnetic potential (Weber / m) 
ap magnetic field curvature (m) 
B magnetic induction (0 – 1 Tesla) 
E electric field (Volt / m) 
e electron charge (1.6 10-19 Coulomb) 
F thrust (0.1 – 0.2 N) 
G dimensionless detachment scaling parameter 
g gravitational acceleration (9.8 m / s2) 
Isp specific impulse (5000 – 104 s) 
I identity tensor 
j current density (0 – 105 Ampere / m2) 
k Boltzmann constant (1.38 10-23 J / K) 
m particle mass (D ion: 3.34 10-27 kg) 
m&  propellant flow rate (10-6 kg / s) 
n plasma particle density (0 – 2 1018 m-3) 
P power (24,000 Watt) 

p plasma pressure (Pa) 
Q particle cloud function 
r, φ, z cylindrical coordinates: radial (m), azimuthal 

(rad) and axial (m) 
rL Larmor radius (10-2 – 1 m) 
rp plasma radius (0.02 – 0.1 m) 
t time (s) 
Te electron temperature (1 – 10 eV) 
Ti ion temperature (10 – 100 eV) 
u exhaust (fluid) velocity (104 - 105  m / s) 
v particle velocity (ion: 104 – 105 m / s) 
W energy (eV) 
w particle cloud weight 
X cell position (m) 
xi ion 3-D position vector (m) 
β ratio of plasma kinetic pressure to the 

magnetic pressure (0 – 10) 
η viscosity (kg / (m s)) 
ε power efficiency (0.4) 
Φ magnetic flux (Tesla m2) 
ϕ electric potential (-100 - +10 Volt) 
λD Debye length (10-4 – 1 m) 
λmfp ion mean free path (100 – 103 m) 
µ magnetic permeability (1.25 10-6 Henry / m) 
µi magnetic moment 
ΠΠ stress tensor 
π 3.14159265358 
ρ plasma mass density (0 – 7 10-9 kg / m3) 
τ relaxation parameter  (0.3) 
 
Subscripts: 
0 vacuum, inlet 
e electron 
i ion 
j cell 
k particle 
L Larmor 
p plasma, proton 
⊥ orthogonal to vacuum magnetic field B0 
|| parallel to vacuum magnetic field B0 
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